China high quality High Precision Planetary Gearbox Right Angle Square Flange Helical Gearbox Planetary Reduction Gearbox Round Flange Transmission Gearbox for Servo Motor bevel gearbox

Product Description

Planetary Gearbox
GBR 060 10 S1 P1
Reducer Series Code Size Gear Ratio Output Shaft Type Reducer Backlash
GBR – High-Precision Right Angle Square Flange Output 60mm 90mm 115mm 142mm 1 Stage: 3   4   5   6  7  8  9 10
2 Stage: 12  15  16  20  25  28  30 
35  40  45 60  70  80  90  100
S1 – Smooth Output Shaft
S2 – Output Shaft With Key
P1 – Reduced Backlash
P2 – Standard Backlash

Series Unit GBR Z(2)
Lifetime % 20000  
Efficiency with Full Load (3) °C 97 1
  94 2
0perating Temp (4)  -25~+90  
Degree of Protection  IP65
Lubrication Lifetime Lubrication
Mounting Position Any
Motor Flange   DIN 42955-N
Item Unit GBR060 GBR090 GBR115 GBR142 Z(2)
P1 Low Backlash P1 arcmin ≤5 1
≤7 2
P2 Standard Backlash P2 arcmin ≤7 1
≤9 2
Nominal Input Speed (8) rpm 3000 2000  
Maximum Input Speed (8) rpm 6000 4000
Maximum Radial Load (5)(6)(9) N 1200 2400 4300 9100
Maximum Axial Load (5)(6)(9) 1100 2200 3900 8200
Torsional Stiffness Nm/arcmin 7 14 25 50 1
8 16 28 55 2
Weight Kg 2.1 4.2 10.5 20.3 1
2.4 4.9 11.2 21.5 2
Running noise (7) dB(A) 63 65 68 70  

(1) Ratios(= n in/ n out)
(2) Number of stages
(3) Depends on the ratio, n2=100rpm
(4) Referring to the middle of the body surface
(5) These values refer to a speed of the output shaft of n2=100rpm on duty cycle KA=1
     and S1-mode for electrical machines and T= 30°C
(6) Halfway along the output shaft
(7) Sound pressure level; distance 1m; measured on idle running with an input speed of ni =3000rpm; i=5
(8) Allowed operating temperature must be kept; other input speeds on inquiry
(9) Depending on the required output torque, radial and axial loads, cycle and required storage life,                   
     deviating or partly higher values are possible.

We recommend to carry out accurate dimensioning with CZPT or to consult Neugart in this respect.
FAQ
Q: How about your company?
A: We are a gear motor factory established in 1995 and located in HangZhou city of china. 
     We have more than 1200 workers. Our main product is AC micro gear motor 6W to 250W, 
     AC small gear motor 100W to 3700W, brush DC motor 10W to 400W, brushless motor10W to 750W,
     drum motor 60W to 3700W, planetary gearbox,and worm gearbox,etc.

Q: How about your quality control?
A: From raw material to finished products, we have strict and complete IPQC. 
     And the advanced test-ing machine can assure of qualified products delivered.

Q: How to choose a suitable motor?
A: If you have gear motor pictures or drawings to show us, 
    or you tell us detailed specs like volt-age, speed, torque, motor size, the working model of the motor, needed lifetime and noise level, etc. 
    please do not hesitate to let us know, then we can suggest a suitable motor per your request.

Q: Can you make the gear motor with customizing specifications?
A: Yes, we can customize per your request for the voltage, speed, torque, and shaft size and shape. 
     if you need additional wires or cables soldered on the terminal or need to add connectors, or capacitors, or EMC we can make it too.

Q: What’s your lead time?
A: Usually our regular standard product will need 10-15days, a bit longer for customized products. 
     But we are very flexible on the lead time, it will depend on the specific orders.

Q: What is your MOQ?
A: If delivered by sea, the minimum order is 100 pieces, if deliver by express, there is no limit.

Q: Do you have the item in stock?
A: l am sorry we do not have the item in stock, All products are made with orders.

Q: How to contact us?
A: You can send us an inquiry.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2
Certification: ISO9001, CCC
Customization:
Available

|

Customized Request

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining a compact form factor poses several challenges due to the intricate arrangement of gears and the need to balance various factors:

Space Constraints: Increasing the gear ratio typically requires adding more planetary stages, resulting in additional gears and components. However, limited available space can make it challenging to fit these additional components without compromising the compactness of the gearbox.

Efficiency: As the number of planetary stages increases to achieve higher gear ratios, there can be a trade-off in terms of efficiency. Additional gear meshings and friction losses can lead to decreased overall efficiency, impacting the gearbox’s performance.

Load Distribution: The distribution of loads across multiple stages becomes critical when designing high gear ratio planetary gearboxes. Proper load distribution ensures that each stage shares the load proportionally, preventing premature wear and ensuring reliable operation.

Bearing Arrangement: Accommodating multiple stages of planetary gears requires an effective bearing arrangement to support the rotating components. Improper bearing selection or arrangement can lead to increased friction, reduced efficiency, and potential failures.

Manufacturing Tolerances: Achieving high gear ratios demands tight manufacturing tolerances to ensure accurate gear tooth profiles and precise gear meshing. Any deviations can result in noise, vibration, and reduced performance.

Lubrication: Adequate lubrication becomes crucial in maintaining smooth operation and reducing friction as gear ratios increase. However, proper lubrication distribution across multiple stages can be challenging, impacting efficiency and longevity.

Noise and Vibration: The complexity of high gear ratio planetary gearboxes can lead to increased noise and vibration levels due to the higher number of gear meshing interactions. Managing noise and vibration becomes essential for ensuring acceptable performance and user comfort.

To address these challenges, engineers employ advanced design techniques, high-precision manufacturing processes, specialized materials, innovative bearing arrangements, and optimized lubrication strategies. Achieving the right balance between high gear ratios and compactness involves careful consideration of these factors to ensure the gearbox’s reliability, efficiency, and performance.

planetary gearbox

Impact of Temperature Variations and Environmental Conditions on Planetary Gearbox Performance

The performance of planetary gearboxes can be significantly influenced by temperature variations and environmental conditions. Here’s how these factors impact their operation:

Temperature Variations: Extreme temperature fluctuations can affect the lubrication properties of the gearbox. Cold temperatures can cause the lubricant to thicken, leading to increased friction and reduced efficiency. On the other hand, high temperatures can cause the lubricant to thin out, potentially leading to insufficient lubrication and accelerated wear.

Environmental Contaminants: Planetary gearboxes used in outdoor or industrial environments can be exposed to contaminants such as dust, dirt, moisture, and chemicals. These contaminants can infiltrate the gearbox and degrade the quality of the lubricant. Additionally, abrasive particles can cause wear on gear surfaces, leading to decreased performance and potential damage.

Corrosion: Exposure to moisture, especially in humid or corrosive environments, can lead to corrosion of gearbox components. Corrosion weakens the structural integrity of gears and other components, which can ultimately result in premature failure.

Thermal Expansion: Temperature changes can cause materials to expand and contract. In gearboxes, this can lead to misalignment of gears and improper meshing, causing noise, vibration, and reduced efficiency. Proper consideration of thermal expansion is crucial in gearbox design.

Sealing and Ventilation: To mitigate the impact of temperature and environmental factors, planetary gearboxes need effective sealing to prevent contaminants from entering and to retain the lubricant. Proper ventilation is also essential to prevent pressure build-up inside the gearbox due to temperature changes.

Cooling Systems: In applications where temperature control is critical, cooling systems such as fans or heat exchangers can be incorporated to maintain optimal operating temperatures. This helps prevent overheating and ensures consistent gearbox performance.

Overall, temperature variations and environmental conditions can have a profound impact on the performance and lifespan of planetary gearboxes. Manufacturers and operators need to consider these factors during design, installation, and maintenance to ensure reliable and efficient operation.

planetary gearbox

Role of Sun, Planet, and Ring Gears in Planetary Gearboxes

The arrangement of sun, planet, and ring gears is a fundamental aspect of planetary gearboxes and significantly contributes to their performance. Each gear type plays a specific role in the gearbox’s operation:

  • Sun Gear: The sun gear is located at the center and is driven by the input power source. It transmits torque to the planet gears, causing them to orbit around it. The sun gear’s size and rotation speed affect the overall gear ratio of the system.
  • Planet Gears: Planet gears are smaller gears that surround the sun gear. They are held in place by the planet carrier and mesh with both the sun gear and the internal teeth of the ring gear. As the sun gear rotates, the planet gears revolve around it, engaging with both the sun and ring gears simultaneously. This arrangement multiplies torque and changes the direction of rotation.
  • Ring Gear (Annulus Gear): The ring gear is the outermost gear with internal teeth that mesh with the planet gears’ external teeth. It remains stationary or acts as the output shaft. The interaction between the planet gears and the ring gear causes the planet gears to rotate on their own axes as they orbit the sun gear.

The arrangement of these gears allows for various gear reduction ratios and torque multiplication effects, making planetary gearboxes versatile and efficient for a wide range of applications. The combination of multiple gear engagements and interactions distributes the load across multiple gear teeth, resulting in higher torque capacity, smoother operation, and lower stress on individual gear teeth.

Planetary gearboxes offer advantages such as compact size, high torque density, and the ability to achieve multiple gear reduction stages within a single unit. The arrangement of the sun, planet, and ring gears is essential for achieving these benefits while maintaining efficiency and reliability in various mechanical systems.

China high quality High Precision Planetary Gearbox Right Angle Square Flange Helical Gearbox Planetary Reduction Gearbox Round Flange Transmission Gearbox for Servo Motor   bevel gearbox	China high quality High Precision Planetary Gearbox Right Angle Square Flange Helical Gearbox Planetary Reduction Gearbox Round Flange Transmission Gearbox for Servo Motor   bevel gearbox
editor by CX 2024-03-28